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Abstract

The objective of the paper is to analyse the effects of flow turbulence and inlet moisture on the process of spontaneous condensation of
supercooled steam. Calculations of steady and unsteady spontaneously condensing transonic turbulent flows in Laval nozzles are pre-
sented. Comparisons of model predictions with experimental data are discussed.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-phase droplet-laden flows are frequently encoun-
tered in environmental contexts and industrial applica-
tions, such as the formation of contrails from aircraft
exhausts, the combustion of liquid sprays, and the conden-
sation of steam in turbines. Traditionally, two-phase tran-
sonic flows in Laval nozzles and turbine blade cascades are
modeled in an approximation that ignores the effects of vis-
cosity, thermal conductivity, and turbulence (e.g. [1–6]).
The disregard of molecular viscosity and conductivity is
caused by high flow velocities, at which the molecular
mechanisms of momentum and heat transfer are indeed
not of primary importance as compared to turbulent trans-
fer mechanisms. On the contrary, the turbulence has a sig-
nificant effect on the processes of mass, momentum, and
heat transfer in boundary layers on the walls (in particular,
on the possible deposition of droplets) as well as it can play
an important part in forming condensation shocks and
shock waves under conditions of supercooled steam flow.
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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Therefore, the objective of the paper is to analyze the
effect of turbulence on the process of steady and unsteady
spontaneous condensation of supercooled steam flow in the
absence and the presence of initial moisture in the inlet sec-
tion of the nozzle. It should be noted that the effect of tur-
bulence on spontaneously condensing flow can be due to
two mechanisms: (i) the turbulent transfer of mass,
momentum, and heat, which forms the ‘‘hydrodynamic
pattern” of the flow, and (ii) the turbulent fluctuations of
thermodynamic parameters affecting the rates of nucleation
and droplet growth. This paper deals with the effect of the
former mechanism alone, because a preliminary analysis
reveals that the effect of the latter mechanism turns out
to be less significant. In the future paper, we will treat
the effect of turbulent fluctuations of temperature on the
rates of nucleation and condensation growth of droplets.
2. Background of the model

In this study we consider two-phase high-velocity turbu-
lent flows with small droplets arising during the process of
spontaneous steady and unsteady condensation of super-
cooled steam or entering the nozzle. The response time sp

of such the droplets is assumed to be far shorter than the
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Nomenclature

a0 dimensionless acceleration magnitude
CP heat capacity
Ce1, Ce2, Cl, C1 turbulence constants
d droplet diameter
fu droplet response coefficient
H enthalpy
h half-width or radius of the nozzle
I nucleation rate
J condensation/evaporation rate
kB Boltzmann constant
k turbulence energy
L nozzle length
Ln moments of the PDF
M liquid mass per unit volume
Mmol molecular mass
m droplet mass
N number of droplets per unit volume
NA Avogadro number
P pressure
PrT turbulent Prandtl number
R gas constant
Rek Reynolds number
r droplet radius
Sk, Se turbulence modulation terms
T steam temperature
TL Lagrangian integral timescale
Vi droplet velocity
hu0it0i turbulent heat fluxes
hu0iu0ji turbulent stresses
Wi velocity of two-phase medium
X mass fraction of droplets
xi space coordinate
z turbulence parameter

Greek symbols

DH latent heat of vaporization
DT steam overcooling
d delta-function
e turbulence dissipation rate
h droplet temperature
k thermal conductivity
m kinematic viscosity
mT turbulent viscosity
P turbulence production rate
Pm probability density function of mass distribution
q density
r surface tension
rk, re turbulence constants
s time
sk Kolmogorov time scale
sp droplet response time
sT Taylor time microscale
U droplet volume fraction
v turbulence intensity
WL Lagrangian autocorrelation function
X droplet response parameter

Subscripts

g gas
l liquid
s saturation
0 nozzle inlet
* critical nucleus
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integral time scale of turbulence TL. Moreover, the mass
fraction of droplets (of the moisture) is supposed to be
rather low (X �M/q < 0.1). In this case, the transport
and heat/mass transfer of steam–droplet medium may be
governed by the conservation equations of mass, momen-
tum, and energy for a two-phase flow as a whole by
neglecting the effects of molecular viscosity and
conductivity

oq
os
þ oqW i

oxi
¼ 0; ð1Þ

oqW i

os
þ oqW iW j

oxj
¼ � oP

@xi
�

oqhu0iu0ji
oxj

; ð2Þ

oqH
os
þ oqW iH

oxi
¼ � oCP hu0it0i

oxi
þ oP

os
þ W i

oP
oxi
þ qe: ð3Þ

Here q � (1 � U)qg + Uql � qg + M is the density of the
two-phase steam–droplet medium; qg and ql are the densi-
ties of the gaseous and liquid phases; M � Uql is the mass
of the liquid phase per unit volume; U is the volume frac-
tion of the liquid phase; Wi, H, and CP are the velocity,
the enthalpy, and the heat capacity of the two-phase med-
ium, respectively; P is the pressure; and e denotes the dissi-
pation rate of turbulence energy.

The nucleation rate due to spontaneous condensation is
predicted using the classic Volmer–Frenkel–Zel’dovich
theory

I ¼ N A

Mmol

� �3=2 q2
g

ql

2r
p

� �1=2

exp � 4prr2
�

3kBT

� �
; ð4Þ
where r is the surface tension coefficient, and T is the tem-
perature of the steam.

In (4), the critical radius of nucleation is determined by
the Kelvin formula

r� ¼
2r

qlRT lnðP=P sÞ
;
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where Ps denotes the saturation pressure on a flat surface
(at r =1), which corresponds to the temperature of the
steam T.

The rate of heterogeneous phase transitions depends on
the droplet size (the Knudsen number). The condensation/
evaporation rate of fine droplets at large Knudsen numbers
is given by the kinetic Hertz–Knudsen model for the free-
molecule regime

J ¼ J K ¼
4pr2Pffiffiffiffiffiffiffiffiffiffiffiffi
2pRT
p 1�

ffiffiffiffi
T
h

r !
: ð5Þ

In (5), the temperature of droplets is found from the
condition of equality of the saturated steam pressure at
the curved surface of droplets to the pressure of the sur-
rounding flow. Whence it follows that

h ¼ T s � ðT s � T Þ r�
r
;

where Ts stands for the saturation temperature on a flat
surface (at r =1), which corresponds to the pressure of
the steam P. Note that the condensation/evaporation coef-
ficients, which are usually introduced into the kinetic model
(5), are taken to be equal to unity.

The rate of phase transitions for the continuum regime,
i.e., for the case of relatively large droplets at low Knudsen
numbers, is limited by the removal (during condensation)
or the input (during evaporation) of the heat of vaporiza-
tion. In accordance with this, the rate of phase transitions
is controlled by the thermal resistance between the droplet
surface and the surrounding medium

J ¼ J T ¼
4prkðh� T Þ

DH
; ð6Þ

where k is the thermal conductivity of the gaseous phase,
and DH is the latent heat of vaporization.

In order to determine the rate of condensation/evapora-
tion in the entire range of varying Knudsen numbers, the
interpolation equation is used that combines (5) and (6)

J ¼ J KJ T

J K þ J T

: ð7Þ

The evolution of droplet size spectrum in time and space
due to homogeneous and heterogeneous phase transitions
is governed by a kinetic equation for the probability den-
sity function (PDF) of mass distribution

oP m

os
þ oV iP m

oxi
þ oJP m

om
¼ Idðm� m�Þ; ð8Þ

where m � 4pqlr
3/3 is the droplet mass. In (8), the two first

terms on the left-hand side describe, respectively, the
change in time and the convection in space, whereas the
last term on the left side and the first term on the right side
quantify the evolution of the droplet mass distribution due
to heterogeneous (condensation or evaporation) and
homogeneous (nucleation) phase transitions. The velocity
of the droplet phase Vi is taken to be equal to the velocity
of the two-phase medium Wi.
To solve (8) we invoke the moment method that is based
on employing equations for the moments of the PDF.
These are derived as a result of integrating (8) multiplied
by mk over the droplet mass spectrum

oLn

os
þ oV iLn

oxi
¼ Imn

� þ n
Z 1

0

mn�1JP mðmÞdm;

Ln ¼
Z 1

0

mnPm dm:
ð9Þ

In the free-molecule regime of condensation/evapora-
tion (at r� r�), when the rate of phase transitions accord-
ing to (5) is determined by the relationship J = am2/3 with
a = const, it is expedient that the characteristic moments
describing the size (mass) distribution of droplets should
be provided by Ln at n = 0, 1/3, 2/3, 1 [7]. In this case,
the set of Eq. (9) becomes closed and thereby all of the
PDF moments of interest may be found. In the general case
when the rate of phase transitions is determined by (7) and
hence can be represented as J = a(m)m2/3, the set of Eq. (9)
amounts approximately to

oLn

os
þ oV iLn

oxi
¼ Imn

� þ nað�mnÞLn�1=3;

�mn ¼
Ln

Ln�1=3

� �3

; n ¼ 0; 1=3; 2=3; 1:

ð10Þ

It should be noted that L0 � N and L1 �M are, respec-
tively, the number and mass of droplets per unit volume.

When considering the initial moisture supplied to the
nozzle inlet, we solve two-equation sets of (10) for two
droplet ensembles. The first equation set describes the
ensemble of the droplets which are formed due to the spon-
taneous condensation of supercooled steam, and the sec-
ond one quantifies the evolution of the droplets entering
the nozzle.
3. Turbulence model

Turbulent flow characteristics are simulated on the
basis of a two-equation turbulence model incorporating
the equations of kinetic turbulence energy and its dissi-
pation, that is, the k–e turbulence model. In the frame
of the k–e turbulence model, the Reynolds stresses and
the turbulent heat fluxes are defined by Boussinesq–Fou-
rier’s gradient relationships with an isotropic turbulent
viscosity

hu0iu0ji ¼
2

3
kdij � mT

oW i

oxj
þ oW j

oxi
� 2

3

oW k

oxk
dij

� �
;

hu0it0i ¼ �
mT

PrT

oT
oxi

: ð11Þ

For two-phase flows with relatively small mass fractions
and sizes of droplets, the difference between the velocity of
the two-phase flow as a whole and that of the gaseous
phase may be neglected. Consequently, (11) contains the
velocity of the two-phase flow rather than that of the gas-
eous phase.
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The equations of turbulence energy and its dissipation
rate are represented in the form that is appropriate at
high-Reynolds numbers
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oxi
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e
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ð13Þ

where P � �hu0iu0jioW i=oxj denotes the production rate of
turbulence energy, and Sk and Se designate the source
terms due to droplets.

In the frame of the standard k–e turbulence model, the
turbulent viscosity coefficient is given by

mT ¼ Cl
k2

e
: ð14Þ

The values of constants in (11)–(14) are usually taken to
be as follows: Cl = 0.09, rk = 1.0, re = 1.3, Ce1 = 1.44,
Ce2 = 1.92, PrT = 0.9. The standard turbulence k–e model
(the STM), which involves Eqs. (12) and (13) at Sk = Se = 0
along with (11) and (14), is widely used to calculate flows of
various types. However, in spite of great utility owing to its
simplicity, the STM suffers from well-known drawbacks.
For example, the STM is unable to properly simulate tur-
bulent flows with large velocity gradients, strong contrac-
tion or expansion, surface curvature, and so forth.
Strictly spiking, this model can be correctly employed only
for simulating quasi-equilibrium turbulent flows when the
turbulence generation and dissipation rates are approxi-
mately equal (P � e). The foregoing reasons make the
STM incapable of predicting spontaneously condensing
streams in transonic nozzles and blade channels. Therefore,
the standard k–e model is modified in two aspects. Firstly,
the modulation of turbulence due to droplets is taken into
consideration. Secondly, instead of standard expression
(14) for the eddy viscosity coefficient, this coefficient is
assumed to be a function of the turbulence production-
to-dissipation ratio.

The source term accounting for the modulation of the
turbulence energy due to additional dissipation by droplets
is represented in the form

Sk ¼
2M
sp
ð1� fuÞk;

f u ¼
1

sp

Z 1

0

WLðsÞ exp � s
sp

� �
ds; ð15Þ

where fu is the coefficient of droplet response to the fluid
velocity fluctuations, and WL(s) is the Lagrangian velocity
autocorrelation function of a fluid element moving along a
droplet trajectory. To determine fu, a two-scale bi-exponen-
tial approximation of the autocorrelation function by Saw-
ford [8] is used. This approximation leads to the following
formula for the response coefficient [9]:
fu ¼
2Xþ z2

2Xþ 2X2 þ z2
; X ¼ sp

T L

; z ¼ sT

T L

;

where the turbulence parameter z measures the ratio of the
Lagrangian integral timescale to the Taylor differential
timescale of velocity fluctuations.

The Lagrangian integral timescale is determined by the
relationship

T L ¼ C1=2
l

k
e
:

The Taylor time microscale is given by

sT ¼
2Rek

151=2a0

� �1=2

sk; sk ¼
m
e

� �1=2

;

Rek ¼
20k2

3em

� �1=2

; a0 ¼ 7;

where the value of a0 is taken in accordance with experi-
mental date at large Reynolds numbers [10].

The source term in Eq. (13) is assumed to be propor-
tional to the corresponding one that appears in Eq. (12)

Se ¼ Ce2
e
k

Sk: ð16Þ

The turbulent viscosity coefficient is derived by means of
an expansion procedure for resolving implicit algebraic
equations for Reynolds stress tensor in terms of mean
velocity gradients [11,12]. The first term of this expansion
gives

mT ¼
Cl

1þ ðP=e� 1Þ=C1

k2

e
: ð17Þ

As is seen, the turbulent viscosity coefficient given by
(17) is dependent on the turbulence production-to-dissipa-
tion ratio, and it contains an additional constant C1

respect to the STM. This constant is the familiar one in
the Rotta return-to-isotropy approximation of the pres-
sure–strain correlation. When C1 ?1, (17) reduces to
the STM coefficient (14). The turbulence model incorpo-
rating (11)–(13) along with (15)–(17) is further referred
to as the modified turbulence k–e model (the MTM).
The minimum permissible for C1 equals to unity [13].
When C1 = 1, (17) becomes particularly simple, namely,
mT = Clk2/P. However, as was demonstrated for the first
time by Sarkar and Speziale [14], the Rotta constant plays
an important part in the stability of turbulent flow and,
with a view to ensuring stability, it should assume a value
which exceeds unity. To provide good agreement with
experiments and direct numerical computations, C1 must
not too far remove from unity (e.g. [15]). Therefore, this
constant is further taken as 1.1.

It is worth to emphasize that the implantation of (17)
instead of (14) into a computational code does not require
any changing numerical procedure employed for the stan-
dard k–e model. Therefore, the standard wall function as
the boundary conditions can be used [16].
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4. Calculation results and discussion

Computations have been performed for transonic wet-
steam flows under the conditions corresponding to the
experimental investigations for flat nozzles by Barschdorff
[17] and Skillings et al. [18] as well as for a round nozzle
by Deich and Philippov [19] in both the absence and the
presence of initial moisture supplied to the nozzle inlet.
The motion and heat/mass transfer of the two-phase med-
ium is governed by the set of Eqs. (1), (2), (3), (10), (12) and
(13). Calculations were performed in a two-dimensional
formulation. Particular attention has been paid to condi-
tions producing either steady or unsteady flow because of
condensation phenomena and turbulence effects. With this
object in mind, the total pressure P0, the temperature T0,
and the moisture X0 in the nozzle inlet were varied. More-
over, the computations were conducted at various values of
the inlet turbulence intensity v0 = (k1/2/W)0. The inlet tur-
bulence dissipation rate was given by the relationship
e0 ¼ k3=2

0 =h0 where h0 denotes the inlet half-width or the
radius of the nozzle.

First consider simulation results with no initial mois-
ture entering the nozzle, when the dry steam is supplied
to the nozzle inlet and hence the droplets are forming
due to only spontaneous condensation. When the dry
steam with an inlet state near the saturation line is
expanded through a Laval nozzle, its supercooling may
attain a level of 30–40 K in the supersonic part of the
flow. Such a supercooling causes the spontaneous conden-
sation inducing an increase in pressure. This pressure rise
can be quite steep, that is why it was named the conden-
sation shock.

Figs. 1–3 present the predictions conforming, respec-
tively, to experiments by Barschdorff [17] with
P0 = 78,100 Pa and T0 = 376 K as well as by Skillings
et al. [18] with P0 = 367,000 Pa and T0 = 353 K for the
conditions when the steady condensation shock exists.
From Fig. 1, where the Mach number contours are given,
one can observed the overall pattern of the flow including
Fig. 1. Mach number counters. (a) Barschdorff [17], (b) Skillings et al.
[18].
the shapes of the nozzles being considered. Figs. 2 and 3a
show the axial variation in pressure normalized by the total
inlet pressure as a function of the distance from the nozzle
inlet x scaled by the nozzle length L. The corresponding
axial distributions of the turbulence energy scaled by the
mean axis velocity are displayed in Figs. 2 and 3b. It is seen
that the distributions of pressure along the nozzle predicted
by means of the MTM for low-level inlet turbulence
(v0 = 0.02) are found to be in accordance with experimen-
tal data, including the shape and the position of the con-
densation chock. However, they differ drastically from
those derived with the help of both the MTM for high-level
inlet turbulence (v0 = 0.2) and the STM for low-level inlet
turbulence. Because of great values of the eddy viscosity in
the near-axis region of the nozzle at high-level inlet turbu-
lence, the condensation chock spreads out, and the axial
distributions of pressure and other flow parameters become
quiet. As is clear from Figs. 2 and 3b (curves 3), the STM
predicts too high a level of turbulence even with a low inlet
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value, this also leading to the disappearance of the conden-
sation chock.

When reducing the inlet overheat, the steady condensa-
tion shock moves upstream into the throat of the nozzle.
This results eventually in the crisis of steady flow whereby
an unsteady self-oscillating flow is achieved. The self-
induced oscillations emerge due to the feedback mechanism
that is realized by shock waves: while moving counter to
the flow, these waves lower the supercooling of steam
and, thereby, eliminate the cause of their formation (i.e.,
spontaneous condensation). Thereafter a supersonic
expansion with accompanying condensation is re-estab-
lished and the process repeats, giving the self-induced oscil-
lations of every flow property.

Figs. 4 and 5 present the predictions, which correspond,
respectively, to experiments by Barschdorff [17] with
P0 = 93,400 Pa and T0 = 376 K as well as by Skillings
et al. [18] with P0 = 351,000 Pa and T0 = 348 K for the
conditions when the self-oscillating shock waves take place.
In these figures, curves 1–4 display, at different moments of
time, the pressure and turbulence intensity distributions
predicted by means of the MTM for low-level inlet turbu-
lence (v0 = 0.02). The predicted frequencies of 840 and
410 Hz compare well with the measured ones of 810 and
380 Hz obtained, respectively, in experiments by Bars-
chdorff [17] and by Skillings et al. [18]. From Figs. 4 and
5, it is also clear that the STM results in dissipating the
condensation shock waves (curves 5). Thus, the STM can
lead to predicting a fallacious mode and a wrong structure
of the flow.

Figs. 6 and 7 demonstrate the influence of the inlet tur-
bulence intensity on pressure oscillations at the nozzle axis
near the exit section. All the curves shown in Figs. 6 and 7
were predicted using the MTM. The main effect seen con-
sists in dissipating the condensation shock waves for
high-level inlet turbulence.

In what follows let us examine the impact of inlet
moisture on condensation phenomena. In qualitative
sense, this impact resembles the effect of high-level turbu-
lence, namely, the initial moisture can result in a complete
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disappearance of the condensation chock. This is caused
by a decrease in steam overcooling due to condensation
on the droplets supplied to the nozzle inlet. The influence
of inlet wetness X0 reduces with increasing initial mean-
volume droplet diameter d0, because the effect is propor-
tional to the condensation surface. Fig. 8 shows predicted
and measured variations in pressure along a round nozzle,
when the total pressure in the nozzle inlet was fixed and
equal to 3.16 � 104 Pa, whereas the total inlet tempera-
ture and moisture were changed [19]. Therefore, Fig. 8
demonstrates the impact of inlet steam overheating and
moisture on the process of spontaneous condensation. It
is seen that, in accordance with the experimental date,
the pressure rise induced by spontaneous condensation
decreases with increasing both inlet steam overheating
and inlet moisture. Moreover, like the effect of high-level
inlet turbulence, the inlet moisture can lead not only to
the disappearance of a stationery condensation shock
,
Pa

×1
0−4
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the nozzle by Deich and Philippov [19]. (1) and (4) – T0 = 352 K, X0 = 0;
(2) and (5) – T0 = 352 K, X0 = 0.004; (3) and (6) – T0 = 370 K, X0 = 0.
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but can result in dissipating the condensation shock waves
as well. This is evident from Fig. 9 where the distributions
of pressure and steam overcooling (DT � T � Ts) along
the nozzle by Barschdorff [17] for P0 = 78,100 Pa and
T0 = 376 K are shown.
5. Summary

The main findings obtained from the simulations per-
formed can be given as follows:

(i) The standard k–e turbulence model can be invalid for
predicting two-phase flows in transonic nozzles. This
model may bring about incorrect results, namely, the
disappearance of both a steady condensation shock
and unsteady shock waves even in the case of a
low-level of inlet turbulence.

(ii) The modified k–e turbulence model compares well
with experimental date and properly reproduces the
crucial trends of steady and unsteady spontaneously
condensing flows in Laval nozzles.

(iii) The effect of high-level inlet turbulence causes the
steady chock and the shock waves of spontaneous
condensation to disappear.

(iv) The influence of inlet moisture on spontaneously
condensing flow resembles the effect of turbulence.
In particular, the steady shock and the shock waves
can be completely disappeared as a consequence of
a decrease in steam overcooling due to condensa-
tion of the steam on the droplets entering the
nozzle.
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